Cell competition, growth and size control in the Drosophila wing imaginal disc.

نویسندگان

  • Francisco A Martín
  • Salvador C Herrera
  • Ginés Morata
چکیده

We report here experiments aimed at understanding the connections between cell competition and growth in the Drosophila wing disc. The principal assay has been to generate discs containing marked cells that proliferate at different rates and to study their interactions and their contribution to the final structure. It is known that single clones of fast-dividing cells within a compartment may occupy the larger part of the compartment without affecting its size. This has suggested the existence of interactions involving cell competition between fast- and slow-dividing cells directed to accommodate the contribution of each cell to the final compartment. Here we show that indeed fast-dividing cells can outcompete slow-dividing ones in their proximity. However, we argue that this elimination is of little consequence because preventing apoptosis, and therefore cell competition, in those compartments does not affect the size of the clones or the size of the compartments. Our experiments indicate that cells within a compartment proliferate autonomously at their own rate. The contribution of each cell to the compartment is exclusively determined by its division rate within the frame of a size control mechanism that stops growth once the compartment has reached the final arresting size. This is supported by a computer simulation of the contribution of individual fast clones growing within a population of slower dividing cells and without interacting with them. The values predicted by the simulation are very close to those obtained experimentally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Control of Organ Size in the Development of the Drosophila Wing Disc

UNLABELLED Control of cessation of growth in developing organs has recently been proposed to be influenced by mechanical forces acting on the tissue due to its growth. In particular, it was proposed that stretching of the tissue leads to an increase in cell proliferation. Using the model system of the Drosophila wing imaginal disc, we directly stretch the tissue finding a significant increase i...

متن کامل

Differential Regulation of Cyclin E by Yorkie-Scalloped Signaling in Organ Development

Tissue integrity and homeostasis are accomplished through strict spatial and temporal regulation of cell growth and proliferation during development. Various signaling pathways have emerged as major growth regulators across metazoans; yet, how differential growth within a tissue is spatiotemporally coordinated remains largely unclear. Here, we report a role of a growth modulator Yorkie (Yki), t...

متن کامل

Control of wing size and proportions by Drosophila myc.

Generation of an organ of appropriate size and shape requires mechanisms that coordinate growth and patterning, but how this is achieved is not understood. Here we examine the role of the growth regulator dMyc in this process during Drosophila wing imaginal disc development. We find that dMyc is expressed in a dynamic pattern that correlates with fate specification of different regions of the w...

متن کامل

Compartments and the control of growth in the Drosophila wing imaginal disc.

The mechanisms that control organ growth are among the least known in development. This is particularly the case for the process in which growth is arrested once final size is reached. We have studied this problem in the wing disc of Drosophila, the developmental and growth parameters of which are well known. We have devised a method to generate entire fast-growing Minute(+) (M(+)) discs or com...

متن کامل

Model for the regulation of size in the wing imaginal disc of Drosophila

For animal development it is necessary that organs stop growing after they reach a certain size. However, it is still largely unknown how this termination of growth is regulated. The wing imaginal disc of Drosophila serves as a commonly used model system to study the regulation of growth. Paradoxically, it has been observed that growth occurs uniformly throughout the disc, even though Decapenta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 22  شماره 

صفحات  -

تاریخ انتشار 2009